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BayesVarSel-package Bayes Factors, Model Choice And Variable Selection In Linear Models

Description

Hypothesis testing, model selection and model averaging are important statistical problems that
have in common the explicit consideration of the uncertainty about which is the true model. The
formal Bayesian tool to solve such problems is the Bayes factor (Kass and Raftery, 1995) that
reports the evidence in the data favoring each of the entertained hypotheses/models and can be
easily translated to posterior probabilities.

Details

This package has been specifically conceived to calculate Bayes factors in linear models and then
to provide a formal Bayesian answer to testing and variable selection problems. From a theoretical
side, the emphasis in the package is placed on the prior distributions (a very delicate issue in this
context) and BayesVarSel allows using a wide range of them: Jeffreys-Zellner-Siow (Jeffreys, 1961;
Zellner and Siow, 1980,1984) Zellner (1986); Fernandez et al. (2001), Liang et al. (2008) and
Bayarri et al. (2012).

The interaction with the package is through a friendly interface that syntactically mimics the well-
known Im command of R. The resulting objects can be easily explored providing the user very
valuable information (like marginal, joint and conditional inclusion probabilities of potential vari-
ables; the highest posterior probability model, HPM; the median probability model, MPM) about
the structure of the true -data generating- model. Additionally, BayesVarSel incorporates abilities
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to handle problems with a large number of potential explanatory variables through parallel and
heuristic versions (Garcia-Donato and Martinez-Beneito 2013) of the main commands.

Package: BayesVarSel
Type: Package
Version:  2.0.1
Date: 2020-02-17
License: GPL-2

Author(s)
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See Also

Btest, Bvs, GibbsBvs, BMAcoeff, predict.Bvs

Examples

demo(BayesVarSel.Hald)
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BMAcoeff Bayesian Model Averaged estimations of regression coefficients

Description

Samples of the model averaged objective posterior distribution of regression coefficients

Usage

BMAcoeff(x, n.sim = 10000, method = "svd")

Arguments
X An object of class Bvs
n.sim Number of simulations to be produced
method Text specifying the matrix decomposition used to determine the matrix root of
’sigma’ when simulating from the multivariate t distribution. Possible methods
are eigenvalue decomposition ("eigen"’, default), singular value decomposition
"svd"”), and Cholesky decomposition (’"chol"’). See the help of command
rmvnorm in package mvtnorm for more details
Details

The distribution that is sampled from is the discrete mixture of the (objective) posterior distributions
of the regression coefficients with weights proportional to the posterior probabilities of each model.
That is, from

latex

The models used in the mixture above are the retained best models (see the argument n.keep in
Bvs) if x was generated with Bvs and the sampled models with the associated frequencies if x was
generated with GibbsBvs. The formula for the objective posterior distribution within each model
latex is taken from Bernardo and Smith (1994) page 442.

Note: The above mixture is potentially highly multimodal and this command ends with a multi-
ple plot with the densities of the different regression coefficients to show the user this peculiarity.
Hence which summaries should be used to describe this distribution is a delicate issue and standard
functions like the mean and variance are not recommendable.

Value
BMAcoeff returns an object of class bma.coeffs which is a matrix with n.sim rows with the simu-
lations. Each column of the matrix corresponds to a regression coefficient in the full model.

Author(s)

Gonzalo Garcia-Donato and Anabel Forte

Maintainer: <anabel.forte @uv.es>



Btest 5

See Also

See histBMA for a histogram-like representation of the columns in the object. See Bvs and GibbsBvs
for creating objects of the class Bvs. See Mvnorm for details about argument method.

Examples

## Not run:

#Analysis of Crime Data

#load data
data(UScrime)
crime.Bvs<- Bvs(formula= y ~ ., data=UScrime, n.keep=1000)

crime.Bvs.BMA<- BMAcoeff(crime.Bvs, n.sim=10000)
#the best 1000 models are used in the mixture

#We could force all possible models to be included in the mixture
crime.Bvs.all<- Bvs(formula= y ~ ., data=UScrime, n.keep=2*15)
crime.Bvs.BMA<- BMAcoeff(crime.Bvs.all, n.sim=10000)

#(much slower as this implies ordering many more models...)

#With the Gibbs algorithms:
data(Ozone35)

0z35.GibbsBvs<- GibbsBvs(formula= y ~ ., data=0zone35, prior.betas="gZellner",
prior.models="Constant”, n.iter=10000, init.model="Full”, n.burnin=100,
time.test = FALSE)

0z35.GibbsBvs.BMA<- BMAcoeff(0z35.GibbsBvs, n.sim=10000)

## End(Not run)

Btest Bayes factors and posterior probabilities for linear regression models

Description

It Computes the Bayes factors and posterior probabilities of a list of linear regression models pro-
posed to explain a common response variable over the same dataset

Usage

Btest(
models,
data,
prior.betas = "Robust”,
prior.models = "Constant”,
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priorprobs = NULL,
null.model = NULL
)
Arguments
models A named list with the entertained models defined with their corresponding for-
mulas. If the list is unnamed, default names are given by the routine. One model
must be nested in all the others.
data data frame containing the data.
prior.betas Prior distribution for regression parameters within each model (to be literally

specified). Possible choices include "Robust"”, "Robust.G", "Liangetal”, "gZell-
ner", "ZellnerSiow", "FLS", "intrinsic. MGC" and "THG" (see details).

prior.models Type of prior probabilities of the models (to be literally specified). Possible
choices are "Constant" and "User" (see details).

priorprobs A named vector ir list (same length and names as in argument models) with the
prior probabilities of the models (used in combination of prior.models="User").
If the provided object is not named, then the order in the list of models is used
to assign the prior probabilities

null.model The name of the null model (eg. the one nested in all the others). By default,
the names of covariates in the different models are used to identify the null
model. An error is produced if such identification fails. This identification is not
performed if the definition of the null model is provided, with this argument, by
the user. Note that the (the null.model must coincide with that model with the
largest sum of squared errors and should be smaller in dimension to any other
model).

Details

The Bayes factors, BFi0, are expressed in relation with the simplest model (the one nested in all the
others). Then, the posterior probabilities of the entertained models are obtained as

Pr(Mi | data)=Pr(Mi)*BFi0/C,
where Pr(Mi) is the prior probability of model Mi and C is the normalizing constant.

The Bayes factor B_i depends on the prior assigned for the parameters in the regression models
Mi and Bvs implements a number of popular choices. The "Robust" prior by Bayarri, Berger,
Forte and Garcia-Donato (2012) is the recommended (and default) choice. This prior prior can be
implemented in a more stable way using the derivations in Greenaway (2019) and that are available
in BayesVarSel since version 2.2.x setting the argument to "Robust.G".

Additional options are "gZellner" a prior which corresponds to the prior in Zellner (1986) with
g=n. Also "Liangetal" prior is the hyper-g/n with a=3 (see the original paper Liang et al 2008, for
details). "ZellnerSiow" is the multivariate Cauchy prior proposed by Zellner and Siow (1980, 1984),
further studied by Bayarri and Garcia-Donato (2007). "FLS" is the (benchmark) prior recommended
by Fernandez, Ley and Steel (2001) which is the prior in Zellner (1986) with g=max(n, p*p) p
being the number of covariates to choose from (the most complex model has p+number of fixed
covariates). "intrinsic. MGC" is the intrinsic prior derived by Moreno, Giron, Casella (2015) and
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"IHG" corresponds to the intrinsic hyper-g prior derived in Berger, Garcia-Donato, Moreno and
Pericchi (2022).

With respect to the prior over the model space Pr(Mi) three possibilities are implemented: "Con-
stant", under which every model has the same prior probability and "User". With this last option,
the prior probabilities are defined through the named list priorprobs. These probabilities can be
given unnormalized.

Limitations: the error "A Bayes factor is infinite.". Bayes factors can be extremely big numbers if
i) the sample size is even moderately large or if ii) a model is much better (in terms of fit) than the
model taken as the null model. We are currently working on more robust implementations of the
functions to handle these problems. In the meanwhile you could try using the g-Zellner prior (which
is the most simple one and results, in these cases, should not vary much with the prior) and/or using
more accurate definitions of the simplest model.

Value

Btest returns an object of type Btest which is a 1ist with the following elements:

BFio A vector with the Bayes factor of each model to the simplest model.
PostProbi A vector with the posterior probabilities of each model.

models A list with the entertained models.

nullmodel The position of the simplest model.

prior.betas prior.betas

prior.models  prior.models

priorprobs priorprobs

Author(s)

Gonzalo Garcia-Donato and Anabel Forte

Maintainer: <anabel.forte @uv.es>

References

Bayarri, M.J., Berger, J.O., Forte, A. and Garcia-Donato, G. (2012)<DOI:10.1214/12-a0s1013>
Criteria for Bayesian Model choice with Application to Variable Selection. The Annals of Statistics.
40: 1550-1557.

Bayarri, M.J. and Garcia-Donato, G. (2007)<DOI:10.1093/biomet/asm014> Extending conven-
tional priors for testing general hypotheses in linear models. Biometrika, 94:135-152.

Barbieri, M and Berger, J (2004)<DOI:10.1214/009053604000000238> Optimal Predictive Model
Selection. The Annals of Statistics, 32, 870-897.

Berger, J., Garcia-Donato, G., Moreno, E., and Pericchi, L. (2022). The intrinsic hyper-g prior for
normal linear models. in preparation.

Fernandez, C., Ley, E. and Steel, M.E.J. (2001)<DOI:10.1016/s0304-4076(00)00076-2> Bench-
mark priors for Bayesian model averaging. Journal of Econometrics, 100, 381-427.

Greenaway, M. (2019) Numerically stable approximate Bayesian methods for generalized linear
mixed models and linear model selection. Thesis (Department of Statistics, University of Sydney).
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Liang, F.,, Paulo, R., Molina, G., Clyde, M. and Berger,J.O. (2008)<DOI:10.1198/016214507000001337>
Mixtures of g-priors for Bayesian Variable Selection. Journal of the American Statistical Associa-
tion. 103:410-423

Zellner, A. and Siow, A. (1980)<DOI:10.1007/bf02888369> Posterior Odds Ratio for Selected Re-
gression Hypotheses. In Bayesian Statistics 1 (J.M. Bernardo, M. H. DeGroot, D. V. Lindley and
A. F. M. Smith, eds.) 585-603. Valencia: University Press.

Zellner, A. and Siow, A. (1984) Basic Issues in Econometrics. Chicago: University of Chicago
Press.

Zellner, A. (1986)<DO0I:10.2307/2233941> On Assessing Prior Distributions and Bayesian Regres-
sion Analysis with g-prior Distributions. In Bayesian Inference and Decision techniques: Essays in
Honor of Bruno de Finetti (A. Zellner, ed.) 389-399. Edward Elgar Publishing Limited.

See Also

Bvs for variable selection within linear regression models

Examples

## Not run:

#Analysis of Crime Data

#load data

data(UScrime)

#Model selection among the following models: (note modell is nested in all the others)
modeli<- y ~ 1 + Prob

model2<- y ~ 1 + Prob + Time

model3<- y ~ 1 + Prob + Pol + Po2

model4<- y ~ 1 + Prob + So

model5<- y ~ .

#Equal prior probabilities for models:

crime.BF<- Btest(models=list(basemodel=modell,
ProbTimemodel=model2, ProbPolmodel=model3,
ProbSomodel=model4, fullmodel=model5), data=UScrime)

#Another configuration of prior probabilities of models:
crime.BF2<- Btest(models=1list(basemodel=modell, ProbTimemodel=model2,
ProbPolmodel=model3, ProbSomodel=model4, fullmodel=model5),

data=UScrime, prior.models = "User"”, priorprobs=list(basemodel=1/8,
ProbTimemodel=1/8, ProbPolmodel=1/2, ProbSomodel=1/8, fullmodel=1/8))
#same as:

#crime.BF2<- Btest(models=1list(basemodel=modell, ProbTimemodel=model2,
#ProbPolmodel=model3,ProbSomodel=model4, #fullmodel=model5), data=UScrime,
#prior.models = "User"”, priorprobs=list(basemodel=1, ProbTimemodel=1,
#ProbPolmodel=4, #ProbSomodel=1, fullmodel=1))

## End(Not run)
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Bvs

Bayesian Variable Selection for linear regression models

Description

Exact computation of summaries of the posterior distribution using sequential computation.

Usage
Bvs(
formula,
data,
null.model = paste(as.formula(formula)[[2]1], " ~ 1", sep = ""),
prior.betas = "Robust”,
prior.models = "ScottBerger”,
n.keep = 10,
time.test = TRUE,
priorprobs = NULL,
parallel = FALSE,
n.nodes = detectCores()
)
Arguments
formula Formula defining the most complex (full) regression model in the analysis. See
details.
data data frame containing the data.
null.model A formula defining which is the simplest (null) model. It should be nested in

prior.betas

prior.models

n.keep

time.test

priorprobs

parallel

n.nodes

the full model. By default, the null model is defined to be the one with just the
intercept.

Prior distribution for regression parameters within each model (to be literally
specified). Possible choices include "Robust", "Robust.G", "Liangetal”, "gZell-
ner", "ZellnerSiow", "FLS", "intrinsic. MGC" and "THG" (see details).

Prior distribution over the model space (to be literally specified). Possible choices
are "Constant", "ScottBerger" and "User" (see details).

How many of the most probable models are to be kept? By default is set to 10,
which is automatically adjusted if 10 is greater than the total number of models.

If TRUE and the number of variables is moderately large (>=18) a preliminary
test to estimate computational time is performed.

A p+1 (p is the number of non-fixed covariates) dimensional vector defining the
prior probabilities Pr(M_i) (should be used in the case where prior.models=
"User"; see details.)

A logical parameter specifying whether parallel computation must be used (if
set to TRUE)

The number of cores to be used if parallel computation is used.
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Details

The model space is the set of all models, Mi, that contain the intercept and are nested in that
specified by formula. The simplest of such models, MO, contains only the intercept. Then Bvs
provides exact summaries of the posterior distribution over this model space, that is, summaries of
the discrete distribution which assigns to each model Mi its probability given the data:

Pr(Mi | data)=Pr(Mi)*Bi/C,

where Bi is the Bayes factor of Mi to MO, Pr(Mi) is the prior probability of Mi and C is the normal-
izing constant.

The Bayes factor B_i depends on the prior assigned for the parameters in the regression models
Mi and Bvs implements a number of popular choices. The "Robust" prior by Bayarri, Berger,
Forte and Garcia-Donato (2012) is the recommended (and default) choice. This prior prior can be
implemented in a more stable way using the derivations in Greenaway (2019) and that are available
in BayesVarSel since version 2.2.x setting the argument to "Robust.G".

Additional options are "gZellner" a prior which corresponds to the prior in Zellner (1986) with
g=n. Also "Liangetal" prior is the hyper-g/n with a=3 (see the original paper Liang et al 2008, for
details). "ZellnerSiow" is the multivariate Cauchy prior proposed by Zellner and Siow (1980, 1984),
further studied by Bayarri and Garcia-Donato (2007). "FLS" is the (benchmark) prior recommended
by Fernandez, Ley and Steel (2001) which is the prior in Zellner (1986) with g=max(n, p*p) p
being the number of covariates to choose from (the most complex model has p+number of fixed
covariates). "intrinsic.MGC" is the intrinsic prior derived by Moreno, Giron, Casella (2015) and
"ITHG" corresponds to the intrinsic hyper-g prior derived in Berger, Garcia-Donato, Moreno and
Pericchi (2022).

With respect to the prior over the model space Pr(Mi) three possibilities are implemented: "Con-
stant", under which every model has the same prior probability, "ScottBerger" under which Pr(Mi)
is inversely proportional to the number of models of that dimension, and "User" (see below). The
"ScottBerger" prior was studied by Scott and Berger (2010) and controls for multiplicity (default
choice since version 1.7.0).

When the parameter prior.models="User", the prior probabilities are defined through the p+1
dimensional parameter vector priorprobs. Let k be the number of explanatory variables in the
simplest model (the one defined by fixed.cov) then except for the normalizing constant, the first
component of priorprobs must contain the probability of each model with k covariates (there is
only one); the second component of priorprobs should contain the probability of each model with
k+1 covariates and so on. Finally, the p+1 component in priorprobs defined the probability of the
most complex model (that defined by formula. That is

priorprobs[j]=Cprior*Pr(M_i such that M_i has j-1+k explanatory variables)
where Cprior is the normalizing constant for the prior, i.e Cprior=1/sum(priorprobsxchoose(p,0:

Note that prior.models="Constant" is equivalent to the combination prior.models="User" and
priorprobs=rep(1, (p+1)) but the internal functions are not the same and you can obtain small
variations in results due to these differences in the implementation.

Similarly, prior.models = "ScottBerger" is equivalent to the combination prior.models= "User"
and priorprobs = 1/choose(p,9:p).

The case where n<p is handled assigning to the Bayes factors of models with k regressors with
n<k a value of 1. This should be interpreted as a generalization of the null predictive matching in
Bayarri et al (2012). Use GibbsBvs for cases where p».



Bvs 11

Limitations: about the error "A Bayes factor is infinite.". Bayes factors can be extremely big num-
bers if 1) the sample size is large or if ii) a competing model is much better (in terms of fit) than the
model taken as the null model. If you see this error, try to use the more stable version of the ro-
bust prior "Robust.g" and/or reconisder using more accurate and realistic definitions of the simplest
model (via the null.model argument).

Value

Bvs returns an object of class Bvs with the following elements:

time The internal time consumed in solving the problem

Imfull The 1m class object that results when the model defined by formula is fitted by
1m

1Imnull The 1m class object that results when the model defined by null.model is fitted
by 1m

variables The name of all the potential explanatory variables (the set of variables to select
from).

n Number of observations

p Number of explanatory variables to select from

k Number of fixed variables

HPMbin The binary expression of the Highest Posterior Probability model

modelsprob A data. frame which summaries the n. keep most probable, a posteriori models,

and their associated probability.
inclprob A named vector with the inclusion probabilities of all the variables.

jointinclprob A data.frame with the joint inclusion probabilities of all the variables.

postprobdim Posterior probabilities of the dimension of the true model

call The call to the function

C The value of the normalizing constant (C=sum BiPr(Mi), for Mi in the model
space)

method full or parallel in case of parallel computation

prior.betas prior.betas

prior.models  prior.models

priorprobs priorprobs

Author(s)

Gonzalo Garcia-Donato and Anabel Forte

Maintainer: <anabel.forte @uv.es>
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See Also
Use print.Bvs for the best visited models and an estimation of their posterior probabilities and
summary .Bvs for summaries of the posterior distribution.

plot.Bvs for several plots of the result, BMAcoeff for obtaining model averaged simulations of
regression coefficients and predict.Bvs for predictions.

GibbsBvs for a heuristic approximation based on Gibbs sampling (recommended when p>20, no
other possibilities when p>31).

See GibbsBvsF if there are factors among the explanatory variables

Examples

## Not run:

#Analysis of Crime Data
#load data
data(UScrime)



GibbsBvs 13

#Default arguments are Robust prior for the regression parameters
#and constant prior over the model space

#Here we keep the 1000 most probable models a posteriori:
crime.Bvs<- Bvs(formula= y ~ ., data=UScrime, n.keep=1000)

#A look at the results:
crime.Bvs

summary(crime.Bvs)

#A plot with the posterior probabilities of the dimension of the
#true model:

plot(crime.Bvs, option="dimension")

#Two image plots of the conditional inclusion probabilities:
plot(crime.Bvs, option="conditional”)

plot(crime.Bvs, option="not")

## End(Not run)

GibbsBvs Bayesian Variable Selection for linear regression models using Gibbs
sampling.

Description

Approximate computation of summaries of the posterior distribution using a Gibbs sampling algo-
rithm to explore the model space and frequency of "visits" to construct the estimates.

Usage

GibbsBvs(
formula,
data,
null.model = paste(as.formula(formula)[[2]1], " ~ 1", sep = ""),
prior.betas = "Robust”,
prior.models = "ScottBerger”,
n.iter = 10000,
init.model = "Full”,
n.burnin = 500,
n.thin =1,
time.test = TRUE,
priorprobs = NULL,
seed = runif(1, @, 16091956)



Arguments

formula

data

null.model

prior.betas

prior.models

n.iter

init.model

n.burnin

n.thin

time.test

priorprobs

seed

Details

GibbsBvs

Formula defining the most complex regression model in the analysis. See de-
tails.

data frame containing the data.

A formula defining which is the simplest (null) model. It should be nested in
the full model. By default, the null model is defined to be the one with just the
intercept.

Prior distribution for regression parameters within each model (to be literally
specified). Possible choices include "Robust", "Robust.G", "Liangetal", "gZell-
ner", "ZellnerSiow", "FLS", "intrinsic. MGC" and "THG" (see details).

Prior distribution over the model space (to be literally specified). Possible choices
are "Constant", "ScottBerger" and "User" (see details).

The total number of iterations performed after the burn in process.

The model at which the simulation process starts. Options include "Null" (the
model only with the covariates specified in fixed.cov), "Full" (the model de-
fined by formula), "Random" (a randomly selected model) and a vector with
p (the number of covariates to select from) zeros and ones defining a model.
When p>n the dimension of the init.model must be smaller than n. Otherwise
the function produces an error.

Length of burn in, i.e. number of iterations to discard at the beginning.

Thinning rate. Must be a positive integer. Set 'n.thin’ > 1 to save memory and
computation time if 'n.iter’ is large. Default is 1. This parameter jointly with
n.iter sets the number of simulations kept and used to construct the estimates
so is important to keep in mind that a large value for ’n.thin’ can reduce the
precision of the results

If TRUE and the number of variables is large (>=21) a preliminary test to esti-
mate computational time is performed.

A p+1 dimensional vector defining the prior probabilities Pr(M_i) (should be
used in the case where prior.models="User"; see the details in Bvs.)

A seed to initialize the random number generator

This is a heuristic approximation to the function Bvs so the details there apply also here.

The algorithm implemented is a Gibbs sampling-based searching algorithm originally proposed by
George and McCulloch (1997). Garcia-Donato and Martinez-Beneito (2013) have shown that this
simple sampling strategy in combination with estimates based on frequency of visits (the one here
implemented) provides very reliable results.

Value

GibbsBvs returns an object of class Bvs with the following elements:

time

The internal time consumed in solving the problem
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call
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Author(s)
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The 1m class object that results when the model defined by formula is fitted by
Im

The 1m class object that results when the model defined by fixed. cov is fitted
by 1m

The name of all the potential explanatory variables
Number of observations

Number of explanatory variables to select from

Number of fixed variables

The binary expression of the most probable model found.

A named vector with the estimates of the inclusion probabilities of all the vari-
ables.

A data.frame with the estimates of the joint inclusion probabilities of all the
variables.

Estimates of posterior probabilities of the dimension of the true model.

A matrix with both the binary representation of the visited models after the
burning period and the Bayes factor (log scale) of that model to the null model.

If prior.models="User" then this vector is stored here. Else, the # type of
prior as defined in prior.models

The call to the function.

An estimation of the normalizing constant (C=sum Bi Pr(Mi), for Mi in the
model space) using the method in George and McCulloch (1997).

gibbs
prior.betas
prior.models

priorprobs

Gonzalo Garcia-Donato and Anabel Forte
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See Also

plot.Bvs for several plots of the result, BMAcoeff for obtaining model averaged simulations of
regression coefficients and predict.Bvs for predictions.

See GibbsBvsF if there are factors among the explanatory variables.
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See pltltn for corrections on estimations for the situation where p»n. See the help in p1tltn for
an application in this situation.

Consider Bvs for exact version obtained enumerating all entertained models (recommended when
p<20).

Examples

## Not run:
#Analysis of Ozone35 data

data(0zone35)

#We use here the (Zellner) g-prior for

#regression parameters and constant prior

#tover the model space

#In this Gibbs sampling scheme, we perform 10100 iterations,

#of which the first 100 are discharged (burnin) and of the remaining

#only one each 10 is kept.

#as initial model we use the Full model

0z35.GibbsBvs<- GibbsBvs(formula= y ~ ., data=0zone35, prior.betas="gZellner",
prior.models="Constant”, n.iter=10000, init.model="Full”, n.burnin=100,
time.test = FALSE)

#Note: this is a heuristic approach and results are estimates
#of the exact answer.

#with the print we can see which is the most probable model
#among the visited
0z35.GibbsBvs

#The estimation of inclusion probabilities and
#the model-averaged estimation of parameters:

summary (0z35.GibbsBvs)

#Plots:
plot(0z35.GibbsBvs, option="conditional”)

## End(Not run)

GibbsBvsF Bayesian Variable Selection with Factors for linear 